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Abstract. A method of choice for realizing finite groups as regular Galois groups over Q(T ) is to
find Q-rational points on Hurwitz moduli spaces of covers. In another direction, the use of the so-called
patching techniques has led to the realization of all finite groups over Qp(T ). Our main result shows that,
under some conditions, these p-adic realizations lie on some special irreducible components of Hurwitz
spaces (the so-called Harbater-Mumford components), thus connecting the two main branches of the
area. As an application, we construct, for every projective system (Gn)n≥0 of finite groups, a tower of
corresponding Hurwitz spaces (HGn )n≥0, geometrically irreducible and defined over Q, which admits
projective systems of Qur

p -rational points for all primes p not dividing the orders |Gn| (n≥0).
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Introduction

Let (Gn)n≥0 be a projective system of finite groups, given with surjective morphisms
sn : Gn →→ Gn−1 (n > 0). In [DeDes] was investigated the problem, given a field k, of
realizing the projective system (Gn)n by a regular tower K0 ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · of
extensions Kn/k(T ): that is, Gal(Kn/k(T )) � Gn, compatibly with the sn and Kn/k is
regular (n ≥ 0). Constructions of such towers were then notably performed in the case that
k is a henselian field containing all roots of 1 of order prime to the residue characteristic
p ≥ 0 of k, under the only assumption that each group Gn is of order prime to p, i.e., is
a p′-group (n ≥ 0). As an application, the free profinite group F̂ω with countably many
generators can be regularly realized as the Galois group of an extension of Qab((x))(T );
and similarly, its prime-to-p quotient F̂

(p′)
ω over Qur

p (T ) (see [DeDes] for more examples).
Using moduli spaces of covers, these problems and results interpret as those of existence

of projective systems of k-rational points on certain towers (Hn)n≥0 of algebraic varieties
(given with maps Hn+1 → Hn). However the varieties Hn of [DeDes] — some Hurwitz
spaces — are reducible in general. Our motivation in the current paper was to obtain a
similar result but with the Hn geometrically irreducible and defined over Q (n ≥ 0).
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The key is to use the Harbater-Mumford components of Hurwitz spaces, which have
been introduced by Fried [Fr]. Their definition, of topological nature, is recalled in sec-
tion 1. As explained in [Fr], HM-components can be characterized by the way the covers
they carry degenerate. We provide a new approach to this using Wewers’ compactification
of Hurwitz spaces [We1]. This allows us to show that HM-components are permuted by
Gal(Q/Q), which was proved in [Fr] under some technical assumptions. We can also prove
the following fact, which is a main ingredient of our construction, and which certainly mo-
tivated Fried’s naming of Harbater-Mumford components: the p-adic covers constructed by
Harbater’s patching methods [Ha] or by its rigid variants [Li] [Po1] lie on HM-components
(under some assumptions). We offer two arguments. One is a deformation argument (from
C to C{{t}}) based on a general “comparison theorem” (proved in [Em2]) expressing the
fundamental group of a semi-stable curve in terms of those of the components of the spe-
cial fiber. Our second argument is ad hoc and is of topological nature (over C). Both use
Wewers’ description of the boundary of Hurwitz spaces.

Our original goal is reached in the final section. To any system (Gn)n≥0 can be attached
a tower (Hn)n≥0 of algebraic varieties Hn, geometrically irreducible and defined over Q,
and which has the following properties (see theorem 4.1 for a full statement):

- each Hn is a component of some moduli space of Galois covers of group Gn; in particular,
if Z(Gn) = {1}, Q-rational points Hn yield regular realizations of Gn over Q(T ) (n ≥ 0).

- there exist projective systems of Qur
p -points, for every p such that all Gn are p′-groups,

- there exist projective systems of Qab((x))-points,

- there exist projective systems of R-points.

The paper is organized as follows. Section 1 presents the main results. Section 2
provides the main tools. Section 3 gives the proofs of the main results. Section 4 is
devoted to the motivating application: we show the above result, improving on [DeDes].
Section 5 is an addendum in which we offer an alternate approach to the main result of
[DeDes] using formal geometry rather than rigid geometry.

We wish to thank Q. Liu for some helpful comments.

1. Main results

1.1. HM-components of Hurwitz spaces. For every integer r ≥ 2, denote as
usual the configuration space for finite subsets of P1 of cardinality r by Ur. Given a subset
t ∈ Ur(C), define a topological bouquet of P1 \ t to be a r-tuple γ of homotopy classes of
loops γ1, . . . , γr based at some point t0 /∈ t such that:
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- γ1, . . . , γr generate the topological fundamental group πtop
1 (P1(C) \ t, t0) with the single

relation γ1 · · · γr = 1,

- γi is a loop revolving once, anticlockwise, about exactly one branch point in t.

We will also use the notion of algebraic bouquet. If k is an algebraically closed field of
characteristic 0 (resp. of characteristic p > 0) and t ∈ Ur(k), an algebraic bouquet of P1

k \t

is defined to be an r-tuple γ of elements γ1, . . . , γr of the algebraic fundamental group

π1(P1
k \ t, t0) (resp. the maximal prime-to-p quotient π

(p′)

1 (P1
k \ t, t0) of the fundamental

group) based at some point t0 /∈ t such that:

- γ1, . . . , γr generate π1(P
1
k\t, t0) (resp. π

(p′)
1 (P1

k\t, t0)) with the single relation γ1 · · · γr = 1

- γi is a generator of some inertia group above ti in the maximal algebraic extension of
k(T ) unramified above t, i = 1, . . . , r.

Given t ∈ Ur(C) and a topological bouquet γ for P1(C) \ t, the map sending every
complex branched cover f : X → P1

C with branch point set t to the r-tuple whose entries
are the monodromy permutations of f−1(t0) associated with the paths γ1, . . . , γs, will be
denoted by BCDγ (where BCD stands for “branch cycle description”). We recall the notion
of Harbater-Mumford type for covers of P1, which was introduced by M. Fried [Fr2].

Definition 1.1 — A cover f with branch point set t is said to be of Harbater-Mumford
type (a HM-cover for short) if r = 2s is even and there exists a topological bouquet γ for
P1(C) \ t such that BCDγ(f) is of the form (g1, g

−1
1 , . . . , gs, g

−1
s ).

Fried was interested in the connected components of HM-covers in the associated moduli
spaces of covers, the so-called Hurwitz spaces, which we will freely use (see [De], [Em1], [Vo]
for presentations and references). Given a finite group G, an integer r ≥ 3, we denote the
Hurwitz space of covers of P1 over an algebraically closed field of characteristic 0, of group
G and with r branch points, by Hr,G; unless otherwise specified, isomorphisms between
two covers f : X → P1 and g : Y → P1 are isomorphisms χ : X → Y of algebraic curves
such that g ◦ χ = f .

There are two variants of Hurwitz spaces, depending on whether one is interested

- in mere covers, in which case, the covers are not necessarily Galois and G is the mon-
odromy group, given as a subgroup of the symmetric group Sd (with d the degree of the
covers), or,

- in G-covers, in which case, the covers are Galois covers given with an isomorphism
between their automorphism group and the group G.

For simplicity, we will not distinguish the notation in these different situations, which,
unless otherwise specified, are both covered in this paper.
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Given an (unordered) r-tuple C = (C1, . . . , Cr) of conjugacy classes of G, we let
Hr,G(C) be the union of irreducible components of Hr,G whose points correspond to covers
with inertia canonical invariant C: recall that this invariant is the collection (Ct)t of con-
jugacy classes Ct of distinguished generators of inertia groups1 above t as t ranges over the
branch points of the cover. The spaces Hr,G and Hr,G(C) are (reducible) smooth quasi-
projective varieties; they are defined over Q and Qab respectively (as integral schemes (not
necessarily geometrically integral)); furthermore Hr,G(C) is itself defined over Q if C is a
rational union of conjugacy classes of G.

We denote by Ψr : Hr,G → Ur the étale cover mapping each point [f ] ∈ Hr,G to
the branch point set t (of cardinality r) of the isomorphism class of the cover f that is
represented by the point [f ]. There is a one-one correspondence between each fiber Ψ−1

r (t)
(t ∈ Ur(C)) and the set

ni(C)• =

⎧⎨⎩(g1, . . . , gr) ∈ Gr

∣∣∣∣∣∣
g1 · · · gr = 1
< g1, . . . , gr > = G
gi ∈ Cσ(i), i = 1, . . . , r for some σ ∈ Sr

⎫⎬⎭ / ∼

where, by “/ ∼”, we mean that the tuples (g1, . . . , gr) are regarded up to component-
wise conjugation by elements of G for G-covers, and, by elements of NorSd

(G) for mere
covers (in which case ni(C)• is usually denoted by ni(C)in or ni(C)ab respectively). More
specifically, for every topological bouquet γ of P1(C) \ t, the map BCDγ induces such a
one-one correspondence between Ψ−1

r (t) and ni(C)•. Furthermore, (geometrically irre-
ducible) components of Hr,G(C) correspond to orbits of the action of π1(Ur) on Ψ−1

r (t),
which classically correspond to orbits of the standard action of the Hurwitz monodromy
group Hr on the set ni(C)• . More precisely, we have this:

(*) A component X ⊂ Hr,G(C)(C) corresponding to some orbit O ⊂ ni(C)• is the set of
those points [f ] which have this property: for any g ∈ O, there exists a topological bouquet
γ for P1(C) \ Ψr([f ]) such that the branch cycle description BCDγ(f) of the cover f is g.
Furthermore, given any t ∈ Ur(C) and any topological bouquet γ for P1 \ t, the orbit O is
exactly the set of all branch cycles description BCDγ(f) with [f ] ∈ X ∩ Ψ−1

r (t).

Suppose r = 2s and C consists of s pairs (Ci, C
−1
i ), i = 1, . . . , s. Let HM(C) be the

set of all r-tuples in ni(C)• of the form g = (g1, g
−1
1 , . . . , gs, g

−1
s ). These tuples are called

H(arbater-)M(umford) representatives of ni(C)• in [Fr].

1 We assume throughout the paper we have fixed a coherent system (ζn)n>0 of roots of unity; the distinguished generator of some
inertia group I, say of order e, is the generator that corresponds to ζe in the natural isomorphism between I and the group μe

of e-th roots of 1.
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Definition 1.2 — A H(arbater-)M(umford) component of the Hurwitz space Hr,G(C) is
the component of some HM-cover. Equivalently, it is a component that corresponds to the
orbit of some HM-representative under the action of the Hurwitz braid group Hr.

All points in a HM-component correspond to HM-covers but in general there may be
several HM-components. However, Fried proved the following [Fr] theorem 3.21. He defines
first the notion of g-complete and HM-g-complete tuples C. A tuple C is g-complete if
it satisfies “gi ∈ Ci, i = 1, . . . , r ⇒ < g1, . . . , gr >= G”. A tuple C with the shape
(C1, C

−1
1 , . . . , Cs, C

−1
s ) is HM-g-complete if it has this property: if any pair Ci, C

−1
i is

removed then what remains is g-complete. He then proves that if C is HM-g-complete, then
all HM-representatives are in the same orbit of the Hurwitz braid group Hr. Consequently,
there is then a unique HM-component. Furthermore, if Z(G) = {1} and if C is a rational
union of conjugacy classes, then this HM-component is defined over Q. We will re-establish
this fact, as a consequence of theorem 1.3, without using the assumption Z(G) = {1}.

1.2. Boundary of HM-components. Fix as above a finite group G, an even integer
r = 2s and an r-tuple C consisting of s pairs (Ci, C

−1
i ), i = 1, . . . , s. In addition, fix

a henselian field k, i.e., the fraction field of a discrete valuation ring O, supposed to be
henselian. Denote the residue field by κ and the characteristic of κ by p; if p > 0, we assume
that p does not divide |G|. We also assume that k is of characteristic 0 and contains all
roots of 1 of prime-to-p order (see remark 4.2 (b)). For example, k can be Qur

p or Qab((x)).
Suppose given a set t = {x1, y1, . . . , xs, ys} ⊂ P1(k). Assume further that, modulo the

maximal ideal P of O,

(*) xi and yi are in the same coset, i = 1, . . . , r, and,
x1, . . . , xs lie in pairwise distinct cosets.

(For points a, b in k identified with P1(k) \ {∞}, being in the same coset modulo P more
explicitly means that either |a| ≤ 1, |b| ≤ 1 and |a − b| < 1, or, |a| > 1 and |b| > 1).

Then P1
k marked by the r-points x1, y1, . . . , xs, ys has a unique stable model P̃t over

O such that the points x1, y1, . . . , xs, ys extends to sections x̃1, ỹ1 . . . , x̃s, ỹs specializing
at distinct points x̄1, ȳ1, . . . , x̄s, ȳs of the special fiber. The special fiber is a comb, i.e., a
stable curve of genus 0 marked by r = 2s points with a root T0, given with an isomorphism
T0 � P1, attached to s end components T1, . . . , Ts, each of them isomorphic to P1 marked
by two points. Denote the intersection point of Ti and T0 by āi, i = 1, . . . , s .

We identify T0 with the special fiber of P1
O and call by abuse of language āi the special-

isation of xi and yi on this special fiber (i = 1, . . . , r). The following diagram summarizes
the situation
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P̄t → P̃t ← P̃t,η

↓ ↓ ↓
T0 → P1

O ← P1
k

where P̄t denotes the special fiber of P̃t and where the last vertical arrow is an isomorphism
between the generic fibers.

For each index i = 1, . . . , r, we introduce the disk Di which is the set of points of
P1

k which reduce to āi in the special fiber T0, we denote by ωi a point of Di such that
|xi −ωi| = |yi −ωi| = |xi − yi| and by ∂Di the set of points x of Di satisfying the relation
|x − ωi| > |xi − ωi| = |yi − ωi|. The model P̃t is obtained from P1

O by a sequence of
blowing up at the points ā1, . . . , ār (viewed as points of the special fiber of P1

O). The fiber
of āi in the natural morphism P̃t → P1

O is the exceptional component Ti, the points of ∂Di

specialize to āi and those of Di \ ∂Di specialize to points of Ti − {āi} (i = 1, . . . , r).

Consider the compactification Hr,G(C) of Hr,G(C) constructed by S. Wewers [We1].
The natural étale morphism Ψr : Hr,G → Ur extends to a ramified cover Hr,G(C) → Ur.
Points on the boundary Ur \Ur represent stable marked curves of genus 0 with a root, i.e.
trees of curves of genus 0 with a distinguished component T0 — the root — equipped with
an isomorphism P1 � T0 and at least three marked points (including the double point)
on any component but the root [We1] (e.g. combs as above). Points on the boundary
Hr,G(C) \ Hr,G(C) represent admissible covers of stable marked curves B of genus 0 with
root [We1]. We briefly explain what is an admissible cover over some field κ with the tools
introduced above.

It is a finite morphism Y → B over κ, with Y connected, whose restriction above each
irreducible component of B is a branched cover and which satisfies the following local
condition above each double point of B. Let O be a discrete valuation ring with residue
field κ and B̃ be the unique extension of B over O. A formal neighborhood of the double
points of B in B̃ is of the form Z̃ = Spec(O[[s, t]]/(st−π) where π is in the maximal ideal of
O. The special fiber of Z̃ has two components Z1, Z2, and restriction induces equivalences
of categories between the category of p′-covers of the geometric generic fiber Z̃η̄ and the
category of p′-covers of Z1 = Z1×Spec(κ)Spec(κ) (resp. Z2 = Z2×Spec(κ)Spec(κ)) unramified
outside the double point 2. An admissible cover of the special fiber is a collection of p′-covers
of the components of the special fiber such that at any double point, the two p′-covers of
Z̃η̄ obtained via the equivalences of categories introduced above, are isomorphic.

2 These categories are Galois categories with fundamental group Ẑp′
, the maximal prime-to-p quotient of Ẑ.
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Below we call HM-admissible cover every admissible cover of a comb that is unramified
at the singular points. Over C, this corresponds to a finite topological (unramified) cover
of a complex comb with each pair of marked points removed from the end components.

Theorem 1.3 — The HM-components of Hr,G(C) are those components whose boundary
in Hr,G(C) contains points representing HM-admissible covers.

It follows from this characterization that if H is some HM-component of Hr,G(C), then
for every τ ∈ Gal(Q/Q), Hτ is a HM-component of Hr,G(C)τ . Consequently, if there is a
unique HM-component H ⊂ Hr,G(C) and if C is a rational union of conjugacy classes of
G (which yields Hr,G(C)τ = Hr,G(C)), then H is defined over Q.

1.3. Construction of HM-covers from patching methods. We retain the nota-
tion and assumptions from §1.2, notably those regarding the set t = {x1, y1 . . . , xs, ys}. In
addition we assume here k is complete. Suppose given a k-cover f : X → P1

k of group G,
with branch point set t and with corresponding inertia canonical invariant C (consisting
as above of s pairs (Ci, C

−1
i ), i = 1, . . . , s). Recall the assumption p � | |G| (if p > 0), that

is, f is a p′-cover. The cover f : X → P1
k, after a possible finite extension of k, uniquely

extends to a cover f̃ : X̃ → P̃t. Its special fiber f̄ : X̄ → P̄t is branched at the marked
points on the end components and also possibly at the singular points ā1, . . . , ās. Denote
also by fi, i = 1, . . . , s, the restricted rigid cover f above the disk Di previously defined.

Proposition 1.4 — The following conditions are equivalent.
(i) each restricted cover fi is trivial above ∂Di, i = 1, . . . , s,
(ii) each restricted cover fi extends to a cover gi : Yi → P1 with only two branch points3

(xi and yi) , i = 1, . . . , s,
(iii) the special fiber f̄ of f̃ is unramified at the singular points ā1, . . . , ās of the comb P̄t,
that is, f̄ is a HM-admissible cover.

Let Q(t) ⊂ k be the subfield generated by the branch point set t = {x1, y1, . . . , xs, ys}
of the cover f and Q(t) ⊂ k be its algebraic closure inside k. It classically follows (from
Riemann’s existence theorem or Grothendieck’s specialization theorem) that f can be
defined over Q(t). Next fix a Q-embedding i : Q(t) ↪→ C. Via this embedding, the cover
f induces a C-cover f i : Xi → P1

C of group G, with branch point set ti and with inertia

3
gi is then necessarily a cyclic cover of P1 by a curve Yi of genus 0.
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canonical invariant C. Denote the corresponding complex point in Hr,G(C) by [f ]i; it is the
image via i of the k-point [f ] ∈ Hr,G(k). We obtain the following result as a consequence
of theorem 1.3 and proposition 1.4.

Corollary 1.5 — If the cover f satisfies the equivalent conditions of proposition 1.4,
then the point [f ]i lies in a HM-component of Hr,G(C).

Denote the irreducible component of [f ] by H. It is defined over Q (and over k) and so
the statement above does not depend on the Q-embedding i : Q(t) ↪→ C.

Remark 1.6. Using patching techniques from formal analytic geometry, Harbater proved
that, for fields k as above, each finite group can be realized as the automorphism group of
a k-G-cover of P1

k [Ha]. In this remark, we explain that for p′-groups, the realizing covers
can be required to further satisfy the conclusions of proposition 1.4 and so of corollary 1.5.
This remark will be used in section 4 to construct projective systems of k-rational points
on infinite towers of Hurwitz spaces.

After Harbater’s original paper, other proofs using rigid analytic geometry (rather than
formal) were given by Liu [Li] and Pop [Po1] [Po2]. Given a p′-group G and a r-tuple C

as above, they can construct a k-G-cover of group G with inertia canonical invariant C.
Furthermore, this cover satisfies condition (i) from proposition 1.4. The patching methods
they use however impose some restriction on the branch point set t = {x1, y1 . . . , xs, ys} ⊂
P1(k); they have this starting hypothesis:

(**) |xi − yi| < |xi − xj | |p|
1

p−1 , j �= i, i = 1, . . . , s

(with the convention that |p| 1
p−1 = 1 in the case p = 0).

If one picks the points x1, y1 . . . , xs, ys ∈ P1(k) satisfying both conditions (*) from §1.2
and (**) above (e.g. |xi| = 1, |xi −xj | = 1 and |xi − yi| < |p| 1

p−1 (i, j ∈ {1, . . . , s}, i �= j)),
then the construction leads to covers satisfying the conclusions of proposition 1.4.

Alternatively, one can, as in [Ha] or [Mo] use formal geometry. With t = {x1, y1 . . . , xs, ys}
as in §1.2, one starts from admissible covers f̄ of the special fiber P̄t such that

(i) the cover f̄ restricted to each end component Ti is a cyclic cover of group < gi > ⊂ G

branched at two points distinct from the intersection point of Ti with the root T0, and
with inertia canonical invariant (gi, g

−1
i ), i = 1, . . . , s,

(ii) f̄ is a trivial cover above P1
κ \ {ā1, . . . , ās}.

Condition (i) implies that f̄ is a HM-admissible cover. Such an admissible cover extends
to a k-cover f : X → P1

k of group G, with branch point set t (see [Ha], [Mo], [We1], [We2]).
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The fact that one can also prescribe the inertia canonical invariant C follows from the
comparison theorem from §2.1. We will adopt this point of view in §5.

2. Tools

2.1. Comparison theorem of fundamental groups. A main tool in the proof of
theorem 1.3 is a comparison theorem between the fundamental groups of the generic fiber
and of the components of the special fiber of a stable marked curve.

The situation is the following. We are given a stable marked curve Z over the valuation
ring O of a henselian field k. We assume the residue field κ to be algebraically closed.
We shall only consider here the special case where Z is of genus 0 and its special fiber
is a comb. We denote its root by T0, its end components by T1, . . . , Ts, the intersection
point of T0 with Ti by āi and the marked points on Ti by x̄i, ȳi, i = 1, . . . , s. We also
denote by {x1, y1, . . . xs, ys} the marked points on the generic fiber Zη, which extend to
sections {x̃1, ỹ1, . . . , x̃s, ỹs} on Z. There are natural restriction functors from the category
of p′-covers of the geometric generic fiber Zη̄ to the category of p′-covers of Ti, i = 1, . . . , s.
These functors induce morphisms

θi : π1(Ti \ {x̄i, ȳi, āi}, ξi) → π1(Zη̄ \ {x1, y1, . . . , xs, ys}, ξ) (i = 1, . . . , s)

θ0 : π1(T0 \ {ā1, . . . , ās}, ξ0) → π1(Zη̄ \ {x1, y1, . . . , xs, ys}, ξ)

defined up to conjugation and where ξ0, ξ1, . . . ξs and ξ are appropriate base points.

Theorem 2.1 — Then there exist

- an algebraic bouquet γ(0) = {γ(0)
1 , . . . , γ

(0)
s } for T0 \ {ā1, . . . , ās} based at ξ0,

- an algebraic bouquet γ(i) = {γ(i)
0 , γ

(i)
1 , γ

(i)
2 } for Ti \ {āi, x̄i, ȳi} based at ξi, i = 1, . . . , s,

and

- elements σi ∈ π1(Zη̄ \ {x1, y1, . . . , xs, ys}, ξ), i = 1, . . . , s,

such that π1(Zη̄ \ {x1, y1, . . . , xs, ys}, ξ) is generated by the elements

- θ0(γ
(0)
1 ), . . . , θ0(γ

(0)
s ), and

- θi(γ
(i)
0 ), θi(γ

(i)
1 ), θi(γ

(i)
2 ), i = 1, . . . , s

with the only relations θ0(γ
(0)
i ) · θi(γ

(i)
0 )σi = 1, i = 1, . . . , s.

We shall use in the proof of lemma 3.2 the topological version of this theorem: if
the residue field κ is C, and if one replaces algebraic fundamental groups by topological
fundamental groups and bouquets by topological bouquets, the statement of Theorem 2.1
holds. The algebraic fundamental groups are the profinite completions of the topological
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fundamental groups, and the morphisms θi are induced by the θtop
i (see first proof of lemma

3.2 for a more precise statement).

2.2. HM-covers degenerating to HM-admissible covers. The general construc-
tion below, which shows some HM-covers degenerate to HM-admissible covers (over C),
will be used in the proof of theorem 1.3.

Let S2 ⊂ R3 be the unit sphere (identified with P1(C)) and let t = {x1, y1, . . . , xs, ys} ⊂
S2 be a subset of r = 2s distinct points. Suppose also given s open disks U1, . . . , Us

such that Ui ∩ Uj = ∅ and xi, yi ∈ Ui, and pick a point ai on the line segment [xi, yi],
(i, j = 1, . . . , s and i �= j).

Consider the continuous deformation tθ = {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s} parametrized by θ ∈ [0, 1]

of the marking t = t0 given by

{
xθ

i = (1 − θ)xi + θai

yθ
i = (1 − θ)yi + θai

(i = 1, . . . , s)

This deformation induces a continuous path between the representing points on the moduli
space Ur. In Wewers’ modular compactification of Ur, the limit point (for θ = 1) represents
a comb. This comb is obtained by blowing up the deformation space tθ (θ ∈ [0, 1]) at each
double point x1

i = y1
i , i = 1, . . . , s (see figures for a topological representation of this

process). Denote the resulting comb by C, which is the union of the sphere S2 with
s “small” spheres Σ1, . . . ,Σs, pairwise disjoint, attached to S2 at the points a1, . . . , as

respectively and marked by two distinct points (distinct from a1, . . . , as).

For each i = 1, . . . , s, let γi,1, γi,2 be closed paths based at ai, revolving around the
segment line [xi, ai] and [ai, yi]; for each θ ∈ [0, 1[, their homotopy classes freely generate
πtop

1 (Ui \ {xθ
i , y

θ
i }, ai). Fix a point a0 ∈ S2 \ ⋃

1≤i≤s Ui and a set of paths δ1, . . . , δs,
pairwise disjoint and connecting a0 to a1, . . . , as respectively, in such a way that, setting
γ̃i,j = δiγi,jδ

−1
i (i = 1, . . . , s, j = 1, 2), the paths γ̃1,1, γ̃1,2, . . . , γ̃s,1, γ̃s,2 constitute a

topological bouquet γ̃ for each base space S2 \ tθ based at a0 (θ ∈ [0, 1[).

Next let d ≥ 1 be an integer and G ⊂ Sd be a subgroup of Sd given with a generating
system {g1, . . . , gs}. For every θ ∈ [0, 1[, let φθ : πtop

1 (S2 \ tθ, a0) → G ⊂ Sd be the
epimorphism mapping γ̃i,1 to gi and γ̃i,2 to g−1

i , i = 1, . . . , s. Denote the associated C-
cover by fθ and the corresponding representing point on Hr,G by hθ. By construction, the
covers fθ are those obtained from f0 by the deformation tθ (θ ∈ [0, 1[). The first part of
the lemma below also follows by construction.
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Lemma 2.2 — The covers fθ are HM-covers (θ ∈ [0, 1[). Furthermore, the collection
of points hθ = [fθ] converges in Hr,G(C) as θ → 1 and the limit point h1 corresponds to
the isomorphism class of a HM-admissible cover f1 of the comb C with cyclic restriction
of inertia canonical invariant {gi, g

−1
i } above each sphere Σi, i = 1, . . . , s.

For the second part, consider a sequence (θn)n>0 of elements in [0, 1[ such that the
sequence (hθn)n>0 converges in Hr,G(C). Due to the continuity of Hr,G(C) → Ur(C), the
limit point h1 corresponds to the isomorphism class of a cover f1 of the comb C.

Set B′ = S2 \ ⋃s
i=1 Ui and fix a path βi in B′ based at a0 revolving around Ui, i =

1, . . . , s, in such a way that the homotopy classes [β1], . . . , [βs] generate πtop
1 (B′, a0) with

the single relation [β1] · · · [βs] = 1. For every θ ∈ [0, 1], denote by φ′
θ the representation

πtop
1 (B′, a0) → Sd associated with the restriction f ′

θ to B′ of the cover fθ (θ ∈ [0, 1]).
For θ ∈ [0, 1[, φ′

θ is the restriction of φθ to πtop
1 (B′, a0). As in πtop

1 (S2 \ tθ, a0) we have
[βi] = [γ̃i,1][γ̃i,2], the definition of φθ yields φθ([βi]) = 1, i = 1, . . . , s, for all θ ∈ [0, 1[. It
follows that φ′

θ([βi]) = 1 in πtop
1 (B′, a0), i = 1, . . . , s, and so, φ′

θ = 1, for all θ ∈ [0, 1[.
Now the assumption lim

n→∞
hθn

= h1 implies that φ′
1 = φ′

θn
= 1 (for all n > 0). Therefore

the restriction of f1 to S2\t1 (the root of the comb C) is unramified at the points a1, . . . , as.
This also shows that the restriction of f1 to each sphere Σi (each end component) is
unramified at ai, hence is a cyclic cover branched at two points, i = 1, . . . , s. Finally
computing the monodromy with respect to the paths γi,1 and γi,2, viewed on the modular
presentation of S2 \ tθ (θ ∈ [0, 1]), yields the inertia canonical invariant {gi, g

−1
i } of f1

above each sphere Σi, i = 1, . . . , s, and concludes the proof of Lemma 2.2.

Addendum to construction. In the proof of lemma 3.2, we will have to use that
(*) the construction above can be achieved with the extra constraint that the comb C and
the cover f1 are prescribed in advance.

That is, the following will be given: the group G ⊂ Sd, the points a1, . . . , as, and,
for i = 1, . . . , s, the (not necessarily transitive) representation πtop

1 (Σi \ {2 pts}) → Sd

(for some fixed d > 0) corresponding to the restriction of f1 to Σi. This last part of the
data readily provides an r-tuple (g1, g

−1
1 , . . . , gs, g

−1
s ): take for gi, g

−1
i the images of two

standard generators of πtop
1 (Σi \ {2 pts}), i = 1, . . . , s. From this, one easily forms an r-

tuple t, a deformation tθ and a cover f0 as above such that the corresponding deformation
of f0 for θ = 1 is the prescribed cover f1. Furthermore, the (topological) monodromy
groups of the covers f0 and f1 are the same, namely the group G generated by g1, . . . , gs,
and the inertia canonical invariant of f0 is the r-tuple C consisting of the conjugacy classes
in G of g1, g

−1
1 . . . , gs, g

−1
s .
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3. Proofs

3.1. Proof of proposition 1.4. Fix i ∈ {1, . . . , s}. There is a reduction functor from
the category of p′-rigid analytic covers of Di, unramified outside {xi, yi} to the category of
p′-algebraic covers of Ti unramified outside {āi, x̄i, ȳi}, and this functor induces a morphism
of fundamental groups

Fi : π1(Ti \ {āi, x̄i, ȳi}) → πrig
1 (Di \ {xi, yi})

On the other hand the inclusion induces a morphism

Gi : πrig
1 (Di \ {xi, yi}) → πrig

1 (P1 \ {x1, y1, . . . , xs, ys})

On the algebraic side (see §2.1), there are natural morphisms

θi : π1(Ti \ {āi, x̄i, ȳi}) → π1(P1 \ {x1, y1, . . . , xs, ys})

Finally the functor which associates to every p′-algebraic cover of P1 \ {x1, y1, . . . , xs, ys}
the corresponding rigid analytic cover, which is an equivalence of categories, induces an
isomorphism

H : πrig
1 (P1 \ {x1, y1, . . . , xs, ys}) → π1(P1 \ {x1, y1, . . . , xs, ys})

We shall use the following equality (true up to conjugation)

θi = H ◦ Gi ◦ Fi

(i)⇒(iii). As explained above, in order to obtain the restriction of f̃ to the exceptional
component Ti, one can reduce modulo an uniformizing parameter the rigid analytic cover
fi. The restriction of fi to ∂Di is supposed to be trivial, and the fiber of āi in the
restriction of f̃ to Ti corresponds to the fiber of ∂Di in fi. This shows that this restriction
is unramified at āi.

(iii)⇒(ii). We suppose the restriction f̄i of f̄ to Ti to be unramified at āi. So fi extends
to a cover of P1

O unramified outside two points xi, yi. The generic fiber of this cover induces
a rigid analytic cover gi : Yi → P1 unramified outside {xi, yi}, whose restriction to Di can
be identified to fi.

(ii) ⇒(i). Suppose that fi extends to a cover gi : Yi → P1 unramified outside {xi, yi}.
The restriction of gi to any disk containing neither xi nor yi is trivial. So the restriction
of fi to ∂Di is trivial.
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3.2. Proof of theorem 1.3.

3.2.1. Direct part. Fix s open disks U1, . . . , Us in P1(C), pairwise disjoint, and pick
distinct points xi, yi in Ui, i = 1, . . . , s. Set t = {x1, y1 . . . , xs, ys} and fix a topological
bouquet γ̃ for P1 \ t as in §2.2. From §1.1, if H is any HM-component of Hr,G(C), there
exists an isomorphism class of cover [fo] ∈ H with branch point set t and with branch
cycle description relative to γ̃ of the form (g1, g

−1
1 , . . . , gs, g

−1
s ). The construction given in

§2.2 then applies to show that H has HM-admissible covers in its boundary.

Alternatively theorem 2.1 can be used to prove this direct part. The rest of the proof
is devoted to the converse.

Suppose given a component H of Hr,G(C) whose boundary contains a point representing
a HM-admissible cover ϕ defined over some field κ. We shall describe “a path in the closure
H” from the point representing ϕ to a complex point representing a Harbater-Mumford
cover. If κ is of characteristic 0, the first stage can be skipped.

3.2.2. First stage. Suppose that the HM-admissible cover ϕ is defined over a field κ

of characteristic p > 0. Let k be a henselian field of characteristic 0 and of residue field κ.
Call O the ring of integers of k.

Lemma 3.1 — The κ-cover ϕ extends to a HM-admissible cover ϕ̃ of a comb with s end
components T̃1, . . . , T̃s, each of them being a copy of P1

O, and satisfying the following:

• the restricted cover ϕ̃ above T̃i is a (not necessarily connected) cyclic cover of group
< gi > ⊂ G, branched at two points and unramified at the intersection of T̃i and the root
T̃0, and with inertia canonical invariant (gi, g

−1
i ), i = 1, . . . , s,

• the restricted cover ϕ̃ above the root T̃0 is trivial.

Proof. The base space of the cover ϕ is a comb τ defined over κ, which consists in a
root τ0 � P1

κ with s marked distinct points α1, . . . , αs, and s end components τ1, . . . , τs

attached to the root at α1, . . . , αs respectively, each of them marked by two points. Choose
a deformation τ̃0 of the marked curve τ0 over O: P1

O marked by α̃1, . . . , α̃s. At each point
α̃i of τ̃0 attach a copy τ̃i of P1

O marked by two points (i = 1, . . . , s). The resulting space τ̃

is a comb over O, which is a deformation of τ .

The restriction of ϕ to each component of τi is a cyclic cover branched at two points,
i = 1, . . . , s. For every given integer d ≥ 1, there is, up to isomorphism, a unique connected
cyclic cover of P1 of degree d branched at two points. Thus each component of ϕ|τi has a
unique deformation to a cover of τ̃i branched at two points. The trivial cover given by the
restriction of ϕ to τ0 obviously extends to a trivial cover of τ̃0. The patching datas above
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the point αi between the restrictions of ϕ to τ0 and τi uniquely extend to patching datas
over O (i = 1, . . . , s). The result is a HM-admissible cover ϕ̃ of the comb τ̃ .

3.2.3. Second stage. If κ is of characteristic p > 0, use the first stage and denote the
generic fiber of ϕ̃ by f̄ . If κ is of characteristic 0, set k = κ and f̄ = ϕ. In both cases,
f̄ is a HM-admissible cover of a comb over k and its representing point [f̄ ] on the moduli
space Hr,G(C) is a k-point in H. Similarly as above, fix an embedding ι of the algebraic
closure of the subfield of k generated by the branch points of the cover f̄ into the field C.
The C-cover f̄ ι obtained via this embedding corresponds to a complex point in H.

By construction, f̄ ι is a complex HM-admissible cover of a comb T : it is trivial above
the root T0 � P1

C, has s end components T1, . . . , Ts isomorphic to P1
C, and each of the

restrictions of f̄ ι to some connected component above Ti is a C-cyclic cover of group
< gi > ⊂ G with inertia canonical invariant (gi, g

−1
i ), i = 1, . . . , s. Furthermore, the

elements g1, . . . , gs generate the (topological) monodromy group of the cover f̄ ι, which is
the group G.

Lemma 3.2 — The C-cover f̄ ι is in the topological closure of some HM-component
HHM of Hr,G(C).

Theorem 1.3 will then follow immediately. Indeed Hr,G(C) is locally the quotient of
a smooth variety by a finite group [We1] and two distinct components of Hr,G(C) have
disjoint boundaries in Hr,G(C) (and so components in Hr,G(C) are closures of components
in Hr,G(C)). The representing points of the covers ϕ and f̄ ι are in the same component of
Hr,G(C); hence they are in the boundary of the same component of Hr,G(C), which from
lemma 3.2 is a HM-component.

We give two proofs of Lemma 3.2. The first one uses §2.1 and the second one §2.2.

1st proof. The complex comb T can be deformed over the ring C{{t}} of Taylor se-
ries of positive radius of convergence to a stable curve P̃t of genus 0 with 2s sections
x̃1, ỹ1, . . . , x̃s, ỹs and whose generic fiber is a P1 with 2s marked points x1, y1, . . . , xs, ys.
The HM-admissible cover f̄ ι can be extended to a C{{t}}-cover f̃ whose generic fiber is
a smooth cover of P1 branched at x1, y1, . . . , xs, ys. As all the varieties we consider are of
finite type over C{{t}}, there exists a real number ρ > 0 such that f̃ induces an analytic
family of covers f̃θ (0 < θ ≤ ρ) of P1 defined over C ramified at 2s points xθ

1, y
θ
1 , . . . , xθ

s, y
θ
s

(the specializations of x̃1, ỹ1, . . . , x̃s, ỹs at t = θ).
We now apply the topological version of Theorem 2.1. The topological fundamental

group of the fiber at θ of P̃t (with t = {x1, y1, . . . , xs, ys}) which we denote below by (P1)θ,
is constant. There are natural morphisms (defined up to conjugation), for every θ ∈]0, ρ[:
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θi : πtop
1 (Ti \ {āi, x̄i, ȳi}, ξi) → πtop

1 ((P1)θ \ {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s}, ξ)) (i = 1, . . . , s)

θ0 : πtop
1 (T0 \ {ā1, . . . , ās}, ξ0) → πtop

1 ((P1)θ \ {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s}, ξ)

where, as in §2.1, x̄i, ȳi are the specialization of x̃i and ỹi on the special fiber of P̃t

(i = 1, . . . , s), ā1, . . . , ās are the intersection points of the end components with the root
of T , and where ξ0, ξ1, . . . ξs and ξ are appropriate base points. We also have

- a topological bouquet γ(i) = {γ(i)
0 , γ

(i)
1 , γ

(i)
2 } for Ti \ {āi, x̄i, ȳi} based at ξi, i = 1, . . . , s,

- a topological bouquet γ(0) = {γ(0)
1 , . . . , γ

(0)
s } for T0 \ {ā1, . . . , ās} based at ξ0, and

- elements σi ∈ πtop
1 ((P1)θ \ {xθ

1, y
θ
1 , . . . , xθ

s, y
θ
s}, ξ), i = 1, . . . , s,

such that πtop
1 ((P1)θ \ {xθ

1, y
θ
1 , . . . , xθ

s, y
θ
s}, ξ) is generated by the elements

- θ0(γ
(0)
1 ), . . . , θ0(γ

(0)
s ), and

- θi(γ
(i)
0 ), θi(γ

(i)
1 ), θi(γ

(i)
2 ), i = 1, . . . , s

with the only relations θ0(γ
(0)
i ) · θi(γ

(i)
0 )σi = 1, i = 1, . . . , s. Furthermore the elements

θ1(γ
(1)
1 )σ1 , θ1(γ

(1)
2 )σ1 , . . . , θs(γ

(s)
1 )σs , θs(γ

(s)
2 )σs constitute a topological bouquet of (P1)θ \

{xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s}.

As the cover f̄ ι is unramified at each point āi, i = 1, . . . , s (f̄ ι is HM-admissible), the
Branch Cycle Description of the cover f̃θ with respect to this topological bouquet is of the
form gh1

1 , (g−1
1 )h1 , . . . , ghs

s , (g−1
s )hs . The cover f̃θ is the unique deformation of f̄ ι above the

path {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s} (θ ∈]0, 1[) and hence is a connected cover of monodromy group

G. Thus the cover f̃θ is a complex Harbater-Mumford cover corresponding to some point
in Hr,G(C), which proves lemma 3.2.

2nd proof. §2.2 explains how to construct a family of HM-covers degenerating to a com-
plex HM-admissible cover f1. From the addendum to construction, there is no restriction
on the degenerate cover f1. We take it to be f̄ ι. The HM-covers fθ (0 < θ < 1) provided
by the construction have then 2s branch points, their group is the group G generated by
g1, . . . , gs and the inertia canonical invariant is the tuple C consisting of the s pairs of
conjugacy classes Ci, C

−1
i of gi and g−1

i , i = 1, . . . , s. This shows indeed that f̄ ι is in the
topological closure of some HM-component HHM of Hr,G(C).
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4. Application to Hurwitz towers

This section is devoted to our application to inverse Galois theory; the previous sections
will be used in the special context of G-covers.

Let (Gn)n≥0 be a projective system of finite groups, given with surjective morphisms
sn : Gn →→ Gn−1 (n > 0) and, as in §1.2, let k be a henselian field of characteristic 0, of
residue characteristic either p = 0 or p > 0 not dividing any of the orders |Gn| (n ≥ 0)
and containing all roots of 1 of prime-to-p order. In [DeDes] a construction is given that
produces a regular tower (Kn)n realizing the inverse system (Gn)n over k(T ): that is,
Gal(Kn/k(T )) � Gn, compatibly with the sn and Kn/k regular (n ≥ 0).

More precisely, [DeDes] explicitly provides a sequence (rn)n≥0 of integers rn ≥ 3 and
a sequence (Cn)n≥0 of rn-tuples Cn of conjugacy classes of Gn such that for each n ≥ 0,
the n-th level of the tower is (the function field of) a k-G-cover fn of group Gn, with rn

branch points and with inertia canonical invariant Cn. These sequences can be constructed
independently of the field k. So [DeDes] leads to the following modular conclusions [DeDes]
§4. There is a tower (HGn,rn(Cn))n≥0 of Hurwitz spaces HGn,rn(Cn) (n ≥ 0), given with
algebraic morphisms HGn,rn

(Cn) → HGn−1,rn−1(Cn−1) (n > 0), which has the following
properties. If k is any henselian field as above, there exist projective systems of k-points on
the tower (Hn)n≥0; for example, there exist projective systems of Qab((x))-rational points
and there exist projective systems of Qur

p -rational points, for each prime p such that all Gn

are of prime-to-p order4 (n ≥ 0). Also there exist projective systems of R-points.
The connection with the current paper is that in [DeDes], the covers fn are, at each level

n, constructed thanks to the rigid patching techniques (n ≥ 0). With remark 1.6, conclude
the covers fn can be constructed to be HM-covers; consequently the corresponding points
on the Hurwitz space lie in some HM-component. Furthermore, the sequences (rn)n≥0 and
(Cn)n≥0 can be chosen in such a way that Cn is HM-g-complete and so there is a single
HM-component, say Hn, on HGn,rn

(Cn), and it is defined over Q (n ≥ 0). The following
statement recapitulates the properties of Hn.

Theorem 4.1 — Given a projective system (Gn)n≥0 of finite groups, one can construct
a projective system (a tower) (Hn)n≥0 of Q-varieties Hn, geometrically irreducible, with
algebraic morphisms ψn : Hn → Hn−1 defined over Q, with the following properties:

(i) For each n ≥ 0, the Q-variety Hn is an irreducible component of some Hurwitz space
Hrn,Gn

(for some integer rn > 0).

4 The fields Qab((x)) and Qur
p can even be replaced by the smaller henselian subfields Qab((x))alg and (Qur

p )alg of all elements
algebraic over Q(x) and Q respectively.



Harbater-Mumford components and towers of Hurwitz spaces 17

(ii) As a consequence of (i), recall that if k is any field of characteristic 0, existence of
k-rational points on Hn implies the group Gn can be realized as the automorphism group
of a k-G-cover of P1 of field of moduli k.

(iii) If k is any henselian field of characteristic 0, of residue characteristic either p = 0 or
p > 0 not dividing any of the orders |Gn| (n ≥ 0), and containing all roots of 1 of prime-
to-p order, there exist projective systems of k-points on the tower (Hn)n≥0. For example,
there exist projective systems of Qab((x))-rational points and there exist projective systems
of Qur

p -rational points, for each prime p such that all Gn (n ≥ 0) are of prime-to-p order.

(iv) In (iii), the projective systems of rational points have the extra property that at each
level n ≥ 0, the point lies in the no-obstruction locus of Hn, that is, where the field of
moduli is a field of definition. Consequently, the projective systems of k-rational points in
question in (iii) correspond to projective systems of k-G-covers Xn → P1, or equivalently,
to towers of k-regular extensions Kn/k(T ), realizing the system (Gn)n≥0.

Remarks 4.2. (a) In general, Hurwitz spaces are coarse moduli spaces and so k-rationality
of their points [f ] only corresponds to f being of field of moduli k but not necessarily defined
over k. In the previous sections, we do get conclusions about the field of definition being
k. So some information is lost in stating the results in terms of rational points on moduli
spaces as in (iii). Assertion (iv) compensates this loss. We could have instead stated the
result in terms of stacks rather than moduli spaces. However in this refined version, the
stack-theoretic Hn counterpart of Hn would not be an algebraic variety anymore.

(b) Recall that presence of roots of 1 in the base field k is not just a technical assumption
due to the method employed. The result would be false otherwise: for example, the group
Zp = lim←−Z/pnZ is not a regular Galois group over Q�(T ) [Se].

(c) Another application, to modular towers is developed in [DeDes]. Suppose given a finite
group G and a prime number � dividing |G| and assume G has a set of generators of order ρ

prime to �. Denote the �-universal Frattini cover of G by �G̃; it is naturally the inverse limit
of some projective system (n

� G̃)n≥0. A typical example is this: G is the dihedral group Dp

of order 2p, � = p is an odd prime, ρ = 2 and the projective system (n
� G̃)n≥0 is the sequence

of dihedral groups (Dpn+1)n≥0, which converges to Dp∞ = Zp×s Z/2. Suppose now given a
henselian field k of characteristic 0; it is not assumed here that k contains roots of 1. Then
the general construction of [DeDes] applies to yield a realization of �G̃ by a tower of regular
Galois extensions of k(T ); furthermore the inertia canonical invariant Cn of the realizing
cover at level n consists of a fixed number, say r, of conjugacy classes of order ρ (n ≥ 0).
Again this interprets as the existence of a projective system of k-rational points on a certain
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tower of Hurwitz spaces, namely the tower (Hr,n
�

G̃(Cn))n≥0. This tower is a modular tower,
as constructed by M. Fried [Fr] [BaFr]. As before, the covers used to realize all finite levels
n
� G̃ (n ≥ 0) are of Harbater-Mumford type. If in addition, C0 is HM-g-complete, then
so are all Cn and so each space Hr,n

�
G̃(Cn) has a unique HM-component, defined over Q.

Conclude as before that the projective system of k-rational points mentioned above can
be found on a tower of algebraic varieties, geometrically irreducible and defined over Q;
furthermore these varieties are here all of the same dimension, namely r.

5. Formal viewpoint

In §4, concerning the construction of infinite towers realizing the complete system
(Gn)n≥0, we rely on the paper [DeDes] where a rigid approach is used. The goal of this
section is to give an alternate proof using formal geometry and thus to provide a complete
formal approach to theorem 4.1.

Theorem 5.1 — Let k be a henselian field of residue characteristic p ≥ 0 and containing
all roots of 1 of prime-to-p order. Let (Gn)n≥0 be a projective system of finite groups of
prime-to-p order. Then there exists a projective system (fn)n≥0 of HM-Galois covers of
P1 defined over k and with corresponding Galois groups (Gn)n≥0.

Proof. We are given a projective system (Gn)n≥0 with epimorphisms sn : Gn →→ Gn−1.
For each n ≥ 0, choose a generating system g(n) = (g(n)

1 , . . . , g
(n)
qn ) of Gn such that{

sn+1(g
(n+1)
j ) = g

(n)
j , j = 1, . . . , qn

sn+1(g
(n+1)
j ) = 1, for all j > qn

We denote this pro-generating system by g.
On the other hand one can construct a projective system (T (n))n≥0 of stable marked

curves T (n) over the valuation ring O of k, whose generic fiber is P1 marked by the set
tn = {x1, y1, . . . , xqn , yqn} of points of P1(k) and the special fiber is a comb with roots
T

(n)
0 and end components T

(n)
j (j = 1, . . . , qn), with morphims of marked curves tn+1 :

T (n+1) → T (n) (n ≥ 0) inducing the identity map Id on the generic fiber and inducing the
following map on the special fiber:⎧⎪⎪⎨⎪⎪⎩

Id : T (n+1)
0 → T

(n)
0

Id : T (n+1)
j → T

(n)
j , j = 1, . . . , qn

T
(n+1)
j → āj , for all j > qn
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where āj denotes the intersection point of T
(n+1)
j with T

(n+1)
0 .

From §2.1 we have morphisms of fundamental groups (defined up to conjugation)

θ
(n)
j : π1(T

(n)
j \ {āj , x̄j , ȳj}) → π1(T

(n)
η̄ \ tn)

(and similarly with j = 0) making the following diagrams commutative (up to conjugation)

π1(T
(n+1)
j \ {āj , x̄j , ȳj}) → π1(T

(n+1)
η̄ \ tn+1)⏐⏐⏐⏐�

⏐⏐⏐⏐� ψn

π1(T
(n)
j \ {āj , x̄j , ȳj}) → π1(T

(n)
η̄ \ tn)

(similarly with j = 0).

For every n ≥ 0, theorem 2.1 provides a bouquet for π1(T
(n)
η̄ \ tn) of the form

θ
(n)
j (γj

1)
τn

j , θ
(n)
j (γj

2)
τn

j , j = 1, . . . , qn

where γj
1 (resp. γj

2) is the generator attached to x̄j (resp. to ȳj) in a bouquet for π1(T
(n)
j \

{āj , x̄j , ȳj}), and τn
j ∈ π1(T

(n)
η̄ \ tn). Moreover, for each n ≥ 0, there exists ωn ∈ π1(T

(n)
η̄ \

tn) such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψn(θn+1

j (γj
1)

τn+1
j ) = (θn

j (γj
1)

τn
j )ωn , j = 1, . . . , qn

ψn(θn+1
j (γj

2)
τn+1

j ) = (θn
j (γj

2)
τn

j )ωn , j = 1, . . . , qn

ψn(θn+1
j (γj

2)
τn+1

j ) = 1, for all j > qn

From HM-admissible covers of the special fiber of T (n) built from cyclic covers of the end
components, one can construct HM-p′-covers of the generic fiber T

(n)
η of group Gn branched

at the 2qn marked points, whose branch cycle description in the previous bouquet is

(θn
j (γj

1)
τj ) → h

(n)
j (θn

j (γj
2)

τj ) → (h(n)
j )−1

where h
(n)
j is a conjugate of g

(n)
j , j = 1, . . . , qn. Moreover one can require that this cover,

which is defined over k 5, has a totally rational fiber (i.e. consisting of k-rational points)
over some fixed k-rational point of the basis; this follows for instance from the fact that
the special fiber of the cover is trivial over the root, and so has many totally κ-rational

5 The part of theorem 2.1 that we use here — existence of extensions over O of any κ-admissible cover — does not need the
assumption “κ algebraically closed”.
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fibers, which extend to totally k-rational fibers. A consequence of this property is that
two such covers which are isomorphic over k̄ are already isomorphic over k.

Let Sn be the set of k-isomorphism classes of such HM-covers of T
(n)
η (n ≥ 0). It is a

non-empty finite set. Moreover, if Z → T
(n+1)
η is a representative of an element of Sn+1,

the cover Z/Ker(sn) → T
(n+1)
η is unramified at the 2qn+1 − 2qn marked points which

specialize on T
(n)
j , qn < j ≤ qn+1, and it induces a Gn-cover Z/Ker(sn) → T

(n)
η ramified

at the 2qn points from tn. The isomorphism class of this cover clearly belongs to Sn.
We have constructed a map from Sn+1 to Sn (n ≥ 0), and the projective limit of the

non-empty finite sets Sn is non-empty. An element of this projective limit is a coherent
system of HM-covers of groups (Gn)n≥0.
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